Structural flexibility of intrinsically disordered proteins induces stepwise target recognition.
نویسندگان
چکیده
An intrinsically disordered protein (IDP) lacks a stable three-dimensional structure, while it folds into a specific structure when it binds to a target molecule. In some IDP-target complexes, not all target binding surfaces are exposed on the outside, and intermediate states are observed in their binding processes. We consider that stepwise target recognition via intermediate states is a characteristic of IDP binding to targets with "hidden" binding sites. To investigate IDP binding to hidden target binding sites, we constructed an IDP lattice model based on the HP model. In our model, the IDP is modeled as a chain and the target is modeled as a highly coarse-grained object. We introduced motion and internal interactions to the target to hide its binding sites. In the case of unhidden binding sites, a two-state transition between the free states and a bound state is observed, and we consider that this represents coupled folding and binding. Introducing hidden binding sites, we found an intermediate bound state in which the IDP forms various structures to temporarily stabilize the complex. The intermediate state provides a scaffold for the IDP to access the hidden binding site. We call this process multiform binding. We conclude that structural flexibility of IDPs enables them to access hidden binding sites and this is a functional advantage of IDPs.
منابع مشابه
Intrinsically disordered proteins: lessons from colicins.
Defining structural features of IDPs (intrinsically disordered proteins) and relating these to biological function requires characterization of their dynamical properties. In the present paper, we review what is known about the IDPs of colicins, protein antibiotics that use their IDPs to enter bacterial cells. The structurally characterized colicin IDPs we consider contain linear binding epitop...
متن کاملFunctional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins
Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prev...
متن کاملProtein flexibility, not disorder, is intrinsic to molecular recognition
An 'intrinsically disordered protein' (IDP) is assumed to be unfolded in the cell and perform its biological function in that state. We contend that most intrinsically disordered proteins are in fact proteins waiting for a partner (PWPs), parts of a multi-component complex that do not fold correctly in the absence of other components. Flexibility, not disorder, is an intrinsic property of prote...
متن کاملMechanisms of small-molecule binding to intrinsically disordered proteins.
IDPs (intrinsically disordered proteins) play crucial roles in many important cellular processes such as signalling or transcription and are attractive therapeutic targets for several diseases. The considerable structural flexibility of IDPs poses a challenge for rational drug discovery approaches. Consequently, structure-based drug design efforts to date have mostly focused on inhibiting inter...
متن کاملNatively unfolded proteins.
It is now clear that a significant fraction of eukaryotic genomes encode proteins with substantial regions of disordered structure. In spite of the lack of structure, these proteins nevertheless are functional; many are involved in critical steps of the cell cycle and regulatory processes. In general, intrinsically disordered proteins interact with a target ligand (often DNA) and undergo a stru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 139 22 شماره
صفحات -
تاریخ انتشار 2013